Detailansicht

Non-equilibrium Dynamics of One-Dimensional Bose Gases

eBook - Springer Theses
ISBN/EAN: 9783319185644
Umbreit-Nr.: 9283644

Sprache: Englisch
Umfang: 0 S., 6.23 MB
Format in cm:
Einband: Keine Angabe

Erschienen am 22.05.2015
Auflage: 1/2015


E-Book
Format: PDF
DRM: Digitales Wasserzeichen
€ 111,95
(inklusive MwSt.)
Sofort Lieferbar
  • Zusatztext
    • This work presents a series of experiments with ultracold one-dimensional Bose gases, which establish said gases as an ideal model system for exploring a wide range of non-equilibrium phenomena. With the help of newly developed tools, like full distributions functions and phase correlation functions, the book reveals the emergence of thermal-like transient states, the light-cone-like emergence of thermal correlations and the observation of generalized thermodynamic ensembles. This points to a natural emergence of classical statistical properties from the microscopic unitary quantum evolution, and lays the groundwork for a universal framework of non-equilibrium physics. The thesis investigates a central question that is highly contested in quantum physics: how and to which extent does an isolated quantum many-body system relax? This question arises in many diverse areas of physics, and many of the open problems appear at vastly different energy, time and length scales, ranging from high-energy physics and cosmology to condensed matter and quantum information. A key challenge in attempting to answer this question is the scarcity of quantum many-body systems that are both well isolated from the environment and accessible for experimental study.
  • Autorenportrait
    • Dr. Tim Langen studied physics in Mainz, Marseille, Paris and Vienna. He is currently a postdoctoral fellow at JILA, Boulder. His research interests include atomic and molecular physics, quantum optics and quantum many-body systems.