Detailansicht

Site-directed insertion of transgenes

Topics in Current Genetics 23
ISBN/EAN: 9789400745308
Umbreit-Nr.: 3270149

Sprache: Englisch
Umfang: xiv, 394 S.
Format in cm:
Einband: gebundenes Buch

Erschienen am 31.07.2012
Auflage: 1/2012
€ 160,49
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • The post-genomic era has brought new challenges and opportunities in all fields of the biology. In this context, several genome engineering technologies have emerged that will help deciphering genes function by as well as improve gene therapy strategies. Genomic modifications such as knock-in, knock-out, knock-down, sequence replacement or modification can today be routinely performed. However, in front of this large palette of methodologies scientists may experience difficulties to gather useful information's scattered within the literature. This book aims to present the state of this field from basic mechanisms of site-directed modifications to their applications in a wide range of organisms such as bacteria, yeast, plants, insects, mammals. It will discuss the problems encountered when using the random integration strategy and present the recent advances made in targeted genome modification. Technologies based on Zinc Finger nucleases, Meganucleases, TALEN, CRE and FLP recombinase, C31 integrase, transposases and resolvases are fully detailed with their strengths and weaknesses. All these information's will help students and experienced researchers to understand and choose the best technology for their own purposes.
  • Kurztext
    • No other book published in this field of researchPresentation of all the innovative methodologies in genome engineeringFrom basic science to practical applicationsConcerns a broad range of organisms (from bacteria to mammals)
  • Autorenportrait
    • InhaltsangabePreface.- Section 1: Site-directed integration of transgenes.- 1 Transgene site-specific integration: troubles and solutions.- 1.1 Introduction.- 1.2 Random integration and clonal dominance: reality or myth.- 1.3 Principal drawbacks of gene transfer integrative systems and solutions.- 1.4 Combining long-term expression and secure integration by specific locus targeting: old solutions to new perspectives.- 1.5 Conclusion.- 2:  Designing non-viral targetd integrating vectors for genome enginnering in vertebrates.- 2.1. Introduction: Ideal integrating vectors and safe insertion sites.- 2.2. Design of random integrating vectors based on DNA transposons and associated-targeting strategy.- 2. 3. Site-specific recombinase-based integrating vectors.- 2. 4. Meganuclease-based vectors.- Section 2: Integration based on homologous recombination.- 3: Gene targeting and homologous recombination in Saccharomyces cerevisiae.- 3.1 Introduction.- 3.2 Transformation with linearized plasmids: targeted integration.- 3.3 Mechanism of targeted integration: a state of the art of homologous recombination.- 3.4 Conclusions and future directions.-  4: Eucaryotic homologous recombination in mammalian cells.- 4.1. Models and products of HR.- 4.2. Molecular mechanisms of the different steps of HR.- 4.3. HR is at the heart of the genetic stability-diversity-instability equilibrium. - 4.4. The importance of sister chromatids in the cell cycle for the maintenance of genome stability.- 4.5. Deregulation of HR and tumor predisposition.- 4.6. HR in molecular evolution: concerted evolution.- 4.7. Comments/considerations regarding optimization of targeted gene replacement. - 5 Engineered Zinc Finger Nucleases for Targeted Genome Editing.- 5.1 Introduction.- 5.2 Zinc Fingers: Structure and Function.- 5.3 Zinc Finger Fusion Proteins.- 5.4 Zinc Finger Engineering Platforms.- 5.5 Modified ZFN Architectures.- 5.6 Types of ZFN-Inducible Genome Modifications.- 5.7 Cell Line and Organismic Modifications using ZFNs.- 5.8 Off-Target Effects and Cytotoxi