Detailansicht

Numerical Methods for Nonsmooth Dynamical Systems

Applications in Mechanics and Electronics, Lecture Notes in Applied and Computational Mechanics 35
ISBN/EAN: 9783540753919
Umbreit-Nr.: 1119626

Sprache: Englisch
Umfang: xxi, 525 S.
Format in cm:
Einband: gebundenes Buch

Erschienen am 19.02.2008
Auflage: 1/2008
€ 320,99
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • This book concerns the numerical simulation of dynamical systems whose trajec- ries may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, rst because of the many app- cations in which nonsmooth models are useful, secondly because they give rise to new problems in various elds of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution va- ational inequalities, each of these classes itself being split into several subclasses. The book is divided into four parts, the rst three parts being sketched in Fig. 0. 1. The aim of the rst part is to present the main tools from mechanics and applied mathematics which are necessary to understand how nonsmooth dynamical systems may be numerically simulated in a reliable way. Many examples illustrate the th- retical results, and an emphasis is put on mechanical systems, as well as on electrical circuits (the so-called Filippov's systems are also examined in some detail, due to their importance in control applications). The second and third parts are dedicated to a detailed presentation of the numerical schemes. A fourth part is devoted to the presentation of the software platform Siconos. This book is not a textbook on - merical analysis of nonsmooth systems, in the sense that despite the main results of numerical analysis (convergence, order of consistency, etc. ) being presented, their proofs are not provided.
  • Kurztext
    • This book concerns the numerical simulation of dynamical systems whose trajectories may not be differentiable everywhere. They are named nonsmooth dynamical systems. They make an important class of systems, firstly because of the many applications in which nonsmooth models are useful, secondly because they give rise to new problems in various fields of science. Usually nonsmooth dynamical systems are represented as differential inclusions, complementarity systems, evolution variational inequalities, each of these classes being itself split into several subclasses. With detailed examples of multibody systems with contact, impact and friction and electrical circuits with piecewise linear and ideal components, the book is is mainly intended for researchers in Mechanics and Electrical Engineering, but it will be attractive to researchers from other scientific communities like Systems and Control, Robotics, Physics of Granular Media, Civil Engineering, Virtual Reality, Haptic Systems, Computer Graphics, etc.