Detailansicht

Poly-SiGe for MEMS-above-CMOS Sensors

Springer Series in Advanced Microelectronics 44
ISBN/EAN: 9789400767980
Umbreit-Nr.: 4590108

Sprache: Englisch
Umfang: xvi, 199 S., 144 farbige Illustr., 199 p. 144 illu
Format in cm:
Einband: gebundenes Buch

Erschienen am 30.07.2013
Auflage: 1/2013
€ 106,99
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • InhaltsangabeAcknowledgements. Abstract. Symbols and Abbreviations. 1 Introduction. 1.1 Motivation and goal of this work. 1.2 MEMS: definition, technologies and applications. 1.3 CMOS-MEMS integration: why, how and what?   1.4 Polycrystalline SiGe for MEMS-above-CMOS applications. 1.5 A poly-SiGe based MEMS pressure sensor. 1.6 Outline of the book.2 Poly-SiGe As Piezoresistive Material. 2.1 Introduction to piezoresistivity. 2.2 Sample preparation. 2.3 Measurement setup. 2.4 Results and discussion. 2.5 Summary and conclusions. 3 Design of a Poly-SiGe Piezoresistive Pressure Sensor. 3.1 A piezoresistive pressure sensor: definition and important performance parameters. 3.2 Design. 3.3 Summary and conclusions of the sensor design.4 The Pressure Sensor Fabrication Process. 4.1 The pressure sensor fabrication process: a generic technology. 4.2 Pressure sensor schematic process flow. 4.3 Process developments and challenges. 4.4 Discussion on the poly-SiGe pressure sensor process.5 Sealing of Surface Micromachined Poly-SiGe Cavities. 5.1 Introduction. 5.2 Fabrication process. 5.3 Direct sealing. 5.4 Intermediate porous cover. 5.5 Measurement setup. 5.6 Analytical model. 5.7 Results and discussion. 5.8 Summary and conclusion. 6 Characterization of Poly-SiGe pressure sensors. 6.1 Measurement setup. 6.2 Measurement results: pressure response. 6.3 Summary and conclusions. 6.4 Capacitive pressure sensors. 7 CMOS Integrated Poly-SiGe Piezoresistive Pressure Sensor. 7.1 The sensor readout circuit: an instrumentation amplifier. 7.2 Fabrication of a CMOS integrated pressure sensor. 7.3 Effect of the MEMS processing on CMOS. 7.4 Evaluation of the CMOS-integrated pressure sensor. 7.5 Conclusions. 8 Conclusions And Future Work. 8.1 Conclusions and contribution of the dissertation. 8.2 Future research directions and recommendations. Appendix A. Appendix B. Appendix C. Appendix D.
  • Kurztext
    • Provides a unique overview of the functionality of Pressure SensorsThe piezoresistive properties of poly-SiGe are investigated in detailThe book contains an in-depth discussion about the fabrication and characterization of CMOS-compatible piezoresistive and capacitive pressure sensors with different areas and designsA comprehensive analysis of the MEMS processing impact on the underlying Cu-based CMOS
  • Autorenportrait
    • InhaltsangabeAcknowledgements. Abstract. Symbols and Abbreviations. 1 Introduction. 1.1 Motivation and goal of this work. 1.2 MEMS: definition, technologies and applications. 1.3 CMOS-MEMS integration: why, how and what?   1.4 Polycrystalline SiGe for MEMS-above-CMOS applications. 1.5 A poly-SiGe based MEMS pressure sensor. 1.6 Outline of the book.2 Poly-SiGe As Piezoresistive Material. 2.1 Introduction to piezoresistivity. 2.2 Sample preparation. 2.3 Measurement setup. 2.4 Results and discussion. 2.5 Summary and conclusions. 3 Design of a Poly-SiGe Piezoresistive Pressure Sensor. 3.1 A piezoresistive pressure sensor: definition and important performance parameters. 3.2 Design. 3.3 Summary and conclusions of the sensor design.4 The Pressure Sensor Fabrication Process. 4.1 The pressure sensor fabrication process: a generic technology. 4.2 Pressure sensor schematic process flow. 4.3 Process developments and challenges. 4.4 Discussion on the poly-SiGe pressure sensor process.5 Sealing of Surface Micromachined Poly-SiGe Cavities. 5.1 Introduction. 5.2 Fabrication process. 5.3 Direct sealing. 5.4 Intermediate porous cover. 5.5 Measurement setup. 5.6 Analytical model. 5.7 Results and discussion. 5.8 Summary and conclusion. 6 Characterization of Poly-SiGe pressure sensors. 6.1 Measurement setup. 6.2 Measurement results: pressure response. 6.3 Summary and conclusions. 6.4 Capacitive pressure sensors. 7 CMOS Integrated Poly-SiGe Piezoresistive Pressure Sensor. 7.1 The sensor readout circuit: an instrumentation amplifier. 7.2 Fabrication of a CMOS integrated pressure sensor. 7.3 Effect of the MEMS processing on CMOS. 7.4 Evaluation of the CMOS-integrated pressure sensor. 7.5 Conclusions. 8 Conclusions And Future Work. 8.1 Conclusions and contribution of the dissertation. 8.2 Future research directions and recommendations. Appendix A. Appendix B. Appendix C. Appendix D.