Detailansicht

Cerebral Cortex

Neurodegenerative and Age-Related Changes in Structure and Function of Cerebral Cortex, Cerebral Cortex 14
ISBN/EAN: 9781461372165
Umbreit-Nr.: 4374947

Sprache: Englisch
Umfang: xxvii, 783 S., 162 s/w Illustr.
Format in cm:
Einband: kartoniertes Buch

Erschienen am 09.10.2012
Auflage: 1/1999
€ 320,99
(inklusive MwSt.)
Lieferbar innerhalb 1 - 2 Wochen
  • Zusatztext
    • This volume of Cerebral Cortex is dedicated to Sir John Eccles, who was an active member of the advisory board for the series until his death in May 1997. His input as to what topics should be covered in future volumes of this series will be sorely missed. The present volume is concerned with neurodegenerative disorders and age related changes in the structure and function of the cerebral cortex, a topic that has attracted increasing interest as longevity and the number of aged individuals in the population increase. Although much of the research on the neurodegenerative effects of aging has been centered on Alzheimer's disease, most of the aging popu lation will not be afflicted by this disease. They will, however, be affected by the consequences of normal aging, so the first few chapters of this volume are con cerned with that topic. Chapter 1, by Marilyn S. Albert and Mark B. Moss, gives an account of the cognitive changes that accompany normal human aging. Chapter 2, by Mark B.
  • Autorenportrait
    • Inhaltsangabe1 Cognitive Profiles of Normal Human Aging.- 1. Introduction.- 2. Domains of Cognitive function.- 3. Memory.- 3.1. Types of Memory.- 3.2. Explicit Memory Performance and Aging.- 3.3. Implicit Memory Performance and Aging.- 4. Executive function.- 5. Visuospatial function.- 6. Language.- 7. Attention.- 8. General Intelligence.- 9. Age-Related Changes in Brain Structure and function.- 10. Conclusion.- 11. References.- 2 Age-Related Cognitive Decline in the Rhesus Monkey.- 1. Introduction.- 2. Life Span of the Rhesus Monkey.- 3. Cognitive function.- 3.1. Attention.- 3.2. Learning and Memory.- 3.3. Executive System function.- 3.4. Motor Skills.- 4. Performance Patterns.- 5. Longitudinal Studies.- 6. Neurobiological Considerations.- 7. Conclusions.- 8. References.- 3 Normal Aging in the Cerebral Cortex of Primates.- 1. Introduction.- 2. Neurons in the Cerebral Cortex.- 3. Variation in the Sizes of Cortical Areas.- 4. Changes in Volume: Gray and White Matter with Age.- 5. Effects of Age on Dendrites.- 6. Effects of Age on Layer I.- 7. Age-Related Changes in Synapses.- 8. Effects of Aging on Axons and Their Sheaths.- 9. Effects of Aging on Neuroglial Cells.- 10. Neuritic Plaques and Amyloid.- 11. Conclusions.- 12. References.- 4 Age-Related Neuronal Loss in the Cerebral Cortex.- 1. Background.- 1.1. Historical Confusion.- 1.2. A More Clear but Still Incomplete View.- 2. Recent Studies with Improved Methods.- 3. Differences in Neuronal Loss Patterns: Normal Aging and Alzheimer's Disease.- 4. Interspecies Differences.- 5. Factors other than Neuronal Loss.- 6. The Emerging View and Its Implications.- 7. References.- 5 Age-Related Cognitive Deficits and Neurotransmitters: The Role of Catecholamine Mechanisms in Prefrontal Cortical Cognitive Decline.- 1. Introduction.- 2. Pattern of Cognitive Deficits with Normal Aging.- 2.1. Monkeys.- 2.2. Humans.- 3. Pattern of Neuropathological and Neurochemical Changes.- 3.1. Neuropathological Changes.- 3.2. Neurochemical Changes.- 4. Neurotransmitter Modulation of the Prefrontal Cortex.- 4.1. Dopamine.- 4.2. Norepinephrine.- 4.3. Serotonin.- 4.4. Acetylcholine.- 5. The Cholinergic Hypothesis of Age-Related Cognitive Decline.- 6. Functional Evidence for PFC Catecholamine Loss with Age.- 6.1. Dopamine Loss.- 6.2. Norepinephrine Loss.- 7. Summary.- 8. References.- 6 Neurotransmitter Receptor Changes in the Hippocampus and Cerebral Cortex in Normal Aging.- 1. Introduction.- 2. Technical Considerations.- 3. Age-Related Changes in Cholinergic Receptors.- 4. Age-Related Changes in GABAergic Receptors.- 5. Age-Related Changes in Glutamatergic Receptors.- 6. Age-Related Changes in Monkey Temporal Lobe.- 7. Possible Mechanisms of Receptor Changes.- 7.1. Membrane Loss.- 7.2. Functional or Metabolic Down-Regulation.- 7.3. Masking of Loss by Up-Regulation.- 7.4. Changes in Affinity and Gene Regulation of Subunits.- 8. Summary and Conclusions.- 9. References.- 7 Trophic Factors in Experimental Models of Adult Central Nervous System Injury.- 1. Introduction.- 1.1. The Trophic Hypothesis.- 1.2. Trophic Factor Diversity.- 1.3. Trophic Influence Assessment in Vivo.- 2. Experimental Approaches.- 2.1. Injury Models.- 2.2. Trophic Factor Delivery Systems.- 3. Nerve Growth Factor.- 3.1. Nerve Growth Factor and Its Receptors.- 3.2. In Vitro Activity.- 3.3. In Vivo Activity.- 3.4. Clinical Experience with Nerve Growth Factor Administration.- 4. Other Neurotrophins.- 4.1. Neurotrophins and Their Receptors.- 4.2. In Vitro Activity.- 4.3. In Vivo Activity.- 4.4. Clinical Experience with Neurotrophin Administration.- 5. Ciliary Neurotrophic Factor.- 6. Fibroblast Growth Factors.- 6.1. Fibroblast Growth Factors and Their Receptors.- 6.2. In Vitro Activity.- 6.3. In Vivo Activity.- 7. Trophic Factor Administration and Adult Neurogenesis.- 7.1. In Vitro Evidence.- 7.2. In Vivo Evidence.- 8. Conclusions.- 8.1. Reliability of Phenotypic Expression.- 8.2. Caveats Regarding Quantification of Tissue Sections.- 8.3. Broad Effects of Tro